Computational modeling of flow and gas exchange in models of the human maxillary sinus.
نویسندگان
چکیده
The present study uses numerical modeling to increase the understanding of sinus gas exchange, which is thought to be a factor in sinus disease. Order-of-magnitude estimates and computational fluid dynamics simulations were used to investigate convective and diffusive transport between the nose and the sinus in a range of simplified geometries. The interaction between mucociliary transport and gas exchange was modeled and found to be negligible. Diffusion was the dominant transport mechanism for small ostia and large concentration differences between the sinus and the nose, whereas convection was important for larger ostia or smaller concentration differences. The presence of one or more accessory ostia can increase the sinus ventilation rate by several orders of magnitude, because it allows a net flow through the sinus. Estimates of nitric oxide (NO) transport through the ostium based on measured sinus and nasal NO concentrations suggest that the sinuses cannot supply all the NO in nasally exhaled air.
منابع مشابه
Numerical modeling of three-phase flow through a Venturi meter using the LSSVM algorithm
One of the challenging problems in the Oil & Gas industry is accurate and reliable multiphase flow rate measurement in a three-phase flow. Application of methods with minimized uncertainty is required in the industry. Previous developed correlations for two-phase flow are complex and not capable of three-phase flow. Hence phase behavior identification in different conditions to designing and mo...
متن کامل2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow
Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...
متن کاملThree Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell
A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...
متن کاملبررسی دقت توموگرافی خطی در تعیین محل حفره بینی و سینوس ماگزیلاری1
Background and Aim: Accurate measurement of bone height and width is essential prior to dental implant placement. The method of surgery as well as, the type and size of implants are determined according to dimensions of the residual bone. The purpose of this study was to evaluate the accuracy of linear tomography in localization of the floor of nasal fossa and maxillary sinus, and to determine ...
متن کاملCOUPLING MODEL FOR MULTI-COMPONENT GAS PERMEATION PROCESS
A gas permeation model (Coupling Model) has been developed which has the flexibility to be used for different membrane module configurations. The aim of this work is to predict the performance of a single stage gas separation process using membranes and provide a comprehensive description of process parameters like flow rates, composition, stage cut and stream pressure. The significant feature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 107 4 شماره
صفحات -
تاریخ انتشار 2009